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Abstract. A theory which can easily be used to discuss the competition between ferromagnetic
order and the Kondo effect is presented in this paper. The magnetic order parameters of
conduction and localized electrons as well as the hybridization term describing the Kondo
effect are introduced simultaneously in a Kondo lattice model using the functional integral
method. At zero temperature, quite a complete phase diagram of ferromagnetic and paramagnetic
(Kondo) states is obtained in the static saddle-point approximation. At finite temperatures, the
dependences of the Curie temperatureTC and the total magnetizationmt on the exchange-
coupling strength|J | for various concentrationsnc of conduction electrons, are also given by
the theory. The main results are in qualitative agreement with experimental observations in
heavy-fermion ferromagnets.

1. Introduction

It is generally agreed that the heavy-fermion (HF) systems can be classified into four broad
groups according to their ground-state properties: superconducting, insulating, magnetically
ordered or enhanced Pauli paramagnetic. The duality between the latter two cases is
concerned with the weak stability of paramagnetic HF metals against HF magnets. As to
the HF materials with magnetically ordered ground states, early experimental observations
indicated that HF magnets usually exhibit some antiferromagnetic type of order [1].
However, there is noa priori reason to exclude ferromagnetism in HF systems, and a
series of HF ferromagnets have recently been discovered, e.g. CeSix (x < 1.85) [2],
CeNixPt1−x (x < 0.9) [3], CePdSb [4] and CeRh3B2 [5]. These Ce compounds constitute
a ferromagnetic Kondo-lattice (FMKL) system in which the RKKY exchange interaction
competes with the Kondo effect; their low-temperature properties upon doping or under
applied pressure (i.e. the variations inTC and mt with changing|J | or nc) attract great
interest but are not well understood so far [5]. This is still an active field in current research
on the HF systems.

Theoretically, the Kondo lattice model (KLM) is a generalization of the single-ion
Kondo system to the concentrated case of a lattice with one Kondo ion at each lattice
site. Doniach [6] first examined a ‘Kondo necklace’ (one-dimensional Kondo lattice (KL))
problem in the mean-field approximation (MFA) and concluded that atT = 0 a second-order
phase transition separates the antiferromagnetic ground state from the non-magnetic (Kondo)
state at a critical value of|J | = |Jc|, and that for|J | < |Jc| the ground state consists of
antiferromagnetic ordered but partially compensated f spins. On the basis of this result,
he proposed a schematic phase diagram in theT –|J | plane where the magnetic-ordering
temperature as a function of|J | resembles a bell-shaped curve [7]. The subsequent study on
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a three-dimensional (3D) KL given by Lacroix and Cyrot [8] indicated that antiferromagnetic
and ferromagnetic ground states are both possible, depending on the extent of band filling,
i.e. on the numbernc of conduction electrons per site. Fazekas and Müller-Hartmann [9]
used a variational method to investigate the phase diagram of the FMKL for arbitrary|J | and
nc. At zero temperature, they obtained phase boundaries between non-magnetic (Kondo)
and different magnetic states including saturated and RKKY ferromagnetic states (RFSs);
they are similar to those given by Lacroix and Cyrot [8] in the wholenc–|J | plane. The only
difference is that in [9] the ferromagnetic–Kondo phase boundary has been pushed down
to lower but more reasonable values of|J | than in [8] owing to the lattice enhancement of
the Kondo effect. However, a coexistent phase where magnetic order and the Kondo effect
are present simultaneously was neglected in both [8] and [9]; it might be a stable phase
between pure Kondo and pure magnetic phases. Following closely the work of Lacroix and
Cyrot [8], Li and Qiu [10] have included the coexistent phase in thenc–|J | plane atT = 0
by taking into account the competition between the Kondo effect and ferromagnetic order.
In [10], two new phase boundaries, including the boundaries between the coexistent phase
and the Kondo phase or saturated ferromagnetic phase, have been obtained, but we failed
to get the boundary between the coexistent phase and RKKY ferromagnetic phase because
the Fermi level was inattentively restricted only in the lower hybridization bands for both
up and down spins. In fact, the Fermi level of the coexistent phase can shift consecutively
from the lower band through the gap to the upper band of up (or down) spin with increase
in nc at a definite value of|J | or by changing|J | at a definitenc [11, 12]. Therefore,
a systematic study on the magnetic–non-magnetic phase boundaries of the FMKL in the
nc–|J | plane atT = 0 and the extension toT > 0 so as to obtain a microscopic derivation
of Tc–|J | curves for variousnc is still needed.

In this paper, we attempt to investigate the paramagnetic–ferromagnetic phase diagram
of a FMKL by adopting the functional integral formalism with four auxiliary Bose fields
in analogy to [13, 14], which can provide a simple description of the competition between
magnetic ordering and the Kondo effect. The rest of the paper is organized as follows.
In section 2, we introduce the functional integral formalism of a FMKL and deduce the
effective Hamiltonian and its self-consistent mean-field (SCMF) equations in the static
saddle-point approximation. In section 3, we present a rather complete ground-state phase
diagram (GSPD) in thenc–|J | plane atT = 0 based on comparing the ground-state energies
(GSEs) of different phases. It also includes a detailed analysis of themt–|J | curves for
arbitrary concentrationnc. In section 4, the bell-shapedTC–|J | curves and their variation
with nc are carried out by solving the SCMF equations atT > 0. Finally, we summarize
the main conclusions of this paper in section 5, where an attempt to compare our theoretical
results with experimental observations in HF ferromagnets is also included.

2. Theoretical model and related formulae of the ferromagnetic Kondo lattice

2.1. Kondo lattice model

In the KLM, there is a one f spin on each site of the lattice; it interacts with conduction
electrons through s–f exchange interaction. Usually, a periodic s–f exchange Hamiltonian

H =
∑
kσ

εkc
†
kσ ckσ − J

∑
iαβ

c
†
iαciβ(σαβ · Si ) (1)

is adopted to describe the KLM. Here,J (< 0) is the strength of s–f exchange coupling,
Si is the f-spin operator of the rare-earth ion on the sitei, σαβ are the elements of Pauli
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matrices,εk is the band energy of conduction electrons, andc
†
kσ (c

†
iσ ) creates a conduction

electron with spinσ and wavevectork (or on the sitei).
In the spin-12 case, one can use the so-called pseudo-fermion representation for the

localized f spins:

S
αβ

if = 1
2

∑
αβ

f
†
iασαβfiβ (2)

provided that we work in the subspace such that

Qi =
∑

σ

f
†
iσ fiσ = 1 (i = 1, . . . , N) (3)

whereN is the number of lattice sites. Physically, constraint (3) denotes that the number
of f electrons at each sitei is strictly one. In terms of the pseudo-fermion representation
(2), we can rewrite the KL Hamiltonian (1) as

H =
∑
kσ

εkc
†
kσ ckσ + 1

2J
∑

i

[(c†
i↑fi↑ + f

†
i↓ci↓)2 + (c

†
i↓fi↓ + f

†
i↑ci↑)2]

− 1
8J

∑
i

{[(c†
i↑ci↑ − c

†
i↓ci↓) + (f

†
i↑fi↑ − f

†
i↓fi↓)]2

−[(c†
i↑ci↑ − c

†
i↓ci↓) − (f

†
i↑fi↑ − f

†
i↓fi↓)]2} (4)

wheref
†
iσ andfiσ are the creation and annihilation operators, respectively, in the Wannier

representation for the localized f electrons. It is worth noting that in (4) the interaction
terms with pre-factor12J represent the processes of s–f hybridizations which favour the
Kondo effect, and the others, with pre-factor− 1

8J , are responsible for the magnetizations
of conduction and f electrons which describe the magnetic ordering effect. Therefore, the
expressions for interaction terms given in (4) are convenient for us to study the competition
between the two effects.

The partition function of the KL Hamiltonian (4) subject to the constraintQi can, using
the technique introduced by Read and Newns [15], be expressed in the form

Z =
∫ iπ/β

−iπ/β

∏
i

β dλi

2π
Tr(exp{−β[H(λ) − µNt ]}) (5)

with

H(λ) = H +
∑

i

λi

( ∑
σ

f
†
iσ fiσ − 1

)
(6a)

and

Nt =
∑
kσ

c
†
kσ ckσ +

∑
iσ

f
†
iσ fiσ . (6b)

The advantage is that the trace forH(λ) can still be calculated in whole Hilbert space, and
then the constraint will be imposed by the final integrations over all theλi via the standard
formula for a Kr̈onecker delta function.

2.2. Functional integral formalism

In the functional integral formalism, the partition function of the KLM is written as

Z =
∫ iπ/β

−iπ/β

∏
i

β dλi

2π

∫
D

∏
iσ

c
†
iσ ciσ f

†
iσ fiσ exp

(
−

∫ β

0
dτL(τ )

)
(7)



7944 Zheng-zhong Li et al

with

L(τ ) =
∑
kσ

c
†
kσ (τ )

d

dτ
ckσ (τ ) +

∑
iσ

f
†
iσ (τ )

d

dτ
fiσ (τ ) + H(λ, τ) − µNt (8)

whereckσ (τ ) and fiσ (τ ) are anticommutating Grassman variables. Here,D ∏
iσ ciσ . . . is

the shorthand for
∏

iσ dc
†
iσ (τ ) . . ..

The interaction term can be reformulated through introducing auxiliary Bose field with
the well known Stratonovich–Hubbard transformation

exp(αA2) =
[α

π

]1/2
∫ +∞

−∞
dx exp[−(αx2 + 2αAx)]. (9)

For the interaction terms ofH(λ) expressed in equations (4)–(6), we can introduce
four auxiliary Bose fields: two ‘internal magnetic fields’mis(τ ) and mif (τ ), which are
responsible for the occurrence of magnetic ordering; a real Bose fieldxi(τ ), which describes
a fictitious s–f hybridization and gives the Kondo effect [8];λi(τ ), which originates from
the parameterλi of the constraint (3) and becomes an auxiliary Bose field now owing to
a gauge transformation given by Read and Newns [15]. The partition function (7) is then
written as

Z =
∫

D
∏
iσ

c
†
iσ ciσ f

†
iσ fiσ λiximismif exp

(
−

∫ β

0
dτL(τ )

)
(10)

where

L(τ ) =
∑
kσ

c
†
kσ (τ )

d

dτ
ckσ (τ ) +

∑
iσ

f
†
iσ (τ )

d

dτ
fiσ (τ ) + Heff (τ ) − µNt (11)

with the imaginary time-dependent effective Hamiltonian

Heff (τ ) =
∑
kσ

εkc
†
kσ ckσ +

∑
i

λi(τ )

( ∑
σ

f
†
iσ fiσ − 1

)
×J

∑
iσ

xi(τ )(f
†
iσ ciσ + c

†
iσ fiσ ) + 1

2J
∑

i

mis(τ )

( ∑
σ

σf
†
iσ fiσ

)
− 1

2

∑
i

mif (τ )

( ∑
σ

σc
†
iσ ciσ

)
− J

∑
i

x2
i (τ ) − 1

2J
∑

i

mis(τ )mif (τ ) (12)

which is similar to that proposed by Lacroix [14]. In the effective Hamiltonian (12), the
interaction terms containing four fermion operators in (4) have been linearized, but the
Bose fields are site and time dependent. On the basis of the above formulae, one can easily
study both magnetic ordering and the Kondo effect on the same footing by using a static
saddle-point approximation.

2.3. Static saddle-point approximation

The simplest approximation to equations (10)–(12) is the static approximation, which is to
neglect the time dependence of auxiliary Bose fields. For a FMKL system, we can also
make a uniform approximation to neglect the site dependence of the fields. Within these
approximations, the four auxiliary Bose fields are replaced by

xi(τ ) = x λi(τ ) = E0 mis(τ ) = ms mif (τ ) = mf . (13)

Here the parametersx, E0, ms and mf are independent of imaginary timeτ and sitei,
and their values are determined by a minimization of the free energy in the saddle-point
approximation.
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Substituting (13) into (12), one obtains a mean-field Hamiltonian of the renormalized
hybridization band problem ink-space as

HMF = Heff (x, E0, ms, mf )

=
∑
kσ

{(εkσ c
†
kσ ckσ + Ef σf

†
kσ fkσ ) + Jx(f

†
kσ ckσ + c

†
kσ fkσ )}

−N(Jx2 + 1
2Jmsmf + E0) (14)

with

εkσ = εk − 1
2σJmf (15)

and

Ef σ = E0 + 1
2σJms (16)

representing the renormalized energies of conduction and f electrons, respectively. Now
thatHMF (14) becomes quadratic in fermion operators, it can be diagonalized exactly. The
quasi-particle energy obtained is of the form

ω±
kσ = 1

2{(εkσ + Ef σ ) ±
√

(εkσ − Ef σ )2 + 4(Jx)2}. (17)

According to the Green function (GF) theory, the density of states (DOS) for the
conduction electrons, denotedρcσ (ω), and the DOS for the f electrons, denotedρf σ (ω),
in the MFA are

ρcσ (ω) = 1

2D
[θ(ω − εaσ )θ(εbσ − ω) + θ(ω − εcσ )θ(εdσ − ω)] (18)

ρf σ (ω) = J 2x2

2D(ω − Ef σ )2
[θ(ω − εaσ )θ(εbσ − ω) + θ(ω − εcσ )θ(εdσ − ω)] (19)

if the unperturbed DOS for conduction electrons takes the form

ρ(0)
cσ (ω) = 1

2D
θ(ω + D)θ(D − ω) (20)

whereθ(ω) is the step function andD the half-width of the conduction band. Theεaσ , εbσ ,
εcσ andεdσ are the edges of hybridized bands with spinσ , which are given by

εaσ = 1
2{−D + Ef σ − 1

2Jmf σ −
√

[−D − Ef σ − 1
2mf σ ]2 + 4(Jx)2} (21a)

εbσ = 1
2{D + Ef σ − 1

2Jmf σ −
√

[D − Ef σ − 1
2mf σ ]2 + 4(Jx)2} (21b)

εcσ = 1
2{−D + Ef σ − 1

2Jmf σ +
√

[−D − Ef σ − 1
2mf σ ]2 + 4(Jx)2} (21c)

εdσ = 1
2{D + Ef σ − 1

2Jmf σ +
√

[D − Ef σ − 1
2mf σ ]2 + 4(Jx)2}. (21d)

Now, we can calculate the free energyF in the static saddle-point approximation (MFA)
directly from the partition function of a free-electron gas without using the functional integral
representation forZ, the result is

F(mf , ms, x, E0) = −β−1
∑
kσ

(ln{1 + exp [−β(ω−
kσ − µ)]} + ln{1 + exp [−β(ω+

kσ − µ)]})

−N(Jx2 + 1
2Jmsmf + E0). (22)
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The values of the parametersmf , ms , x and E0 can then be determined by the static
saddle-point equations for FMKL through minimizingF with respect to those parameters:

mf =
∑

σ

σ

∫ +∞

−∞
f (ω)ρf σ (ω) dω = 1

N

∑
kσ

σ 〈f †
kσ fkσ 〉T (23)

ms =
∑

σ

(−σ)

∫ +∞

−∞
f (ω)ρcσ (ω) dω = 1

N

∑
kσ

(−σ)〈c†
kσ ckσ 〉T (24)

x =
∑

σ

∫ +∞

−∞

Jxf (ω)ρcσ (ω)

ω − Ef σ

dω = 1

N

∑
kσ

〈f †
kσ ckσ 〉T (25)

1 =
∑

σ

∫ +∞

−∞
f (ω)ρf σ (ω) dω = 1

N

∑
kσ

〈f †
kσ fkσ 〉T = nf (26)

where the GF method has been used. From equations (23)–(26), it is clear thatms andmf

are the magnetizations of conduction and f electrons, respectively, representing the magnetic
order parameters of the system;x is an order parameter describing the Kondo effect;E0

is determined by the conditionnf = ∑
σ 〈f †

iσ fiσ 〉T = 1, which shows that the constraint
(3) is now satisfied in an average way. The chemical potentialµ, which enters into the
Fermi distribution functionf (ω) = {exp[β(ω − µ)] + 1}−1, has to be obtained from the
conservation of the total electron numbernc+nf per site. In cooperation with equation (26),
we have an additional equation for fixing the chemical potential:

nc =
∑

σ

∫ +∞

−∞
f (ω)ρcσ (ω) dω. (27)

Equations (23)–(27) constitute a set of fundamental mean-field equations, which will be
used to determine the parametersms , mf , x, E0 andµ in a FMKL self-consistently.

3. Ground-state phase diagram

We now turn to construct the GSPD of the mean-field Hamiltonian (14) for arbitrary values
of the exchange coupling|J |/D and of the conduction band fillingnc. There are three types
of phase that can arise in the ground state ofHMF . They are a pure Kondo phase, a pure
ferromagnetic phase and the ferromagnetic–Kondo coexistent phase. The relative stabilities
of these phases will be obtained by comparing their GSEs. The GSE of the FMKL per unit
cell can be derived fromHMF at T = 0:

Eg =
∑

σ

∫ µ

−∞
ωρcσ (ω) dω − 1

2nc(nc − 2)D (28)

whereµ is the chemical potential atT = 0, i.e. the Fermi level. The origin of the GSE is
taken to be the energy of the paramagnetic phase withx = ms = mf = 0. The results are
as follows.

3.1. Pure Kondo phase

For the pure Kondo phase, we havems = mf = 0. In this limiting case, the conduction
electron DOS reverts to its unperturbed form equation (20), and equation (19) for the f DOS
reduces to the simpler form

ρf σ (ω) = J 2x2

2D(ω − E0)2
[θ(ω − εa)θ(εb − ω) + θ(ω − εc)θ(εd − ω)] (29)
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with the band edges

εa = 1
2{−D + E0 −

√
(D + E0)2 + 4(Jx)2} (30a)

εb = 1
2{D + E0 −

√
(D − E0)2 + 4(Jx)2} (30b)

εc = 1
2{−D + E0 +

√
(D + E0)2 + 4(Jx)2} (30c)

εd = 1
2{D + E0 +

√
(D − E0)2 + 4(Jx)2}. (30d)

The order parameterxK and GSEEK can be easily obtained using the fundamental mean-
field equations (23)–(27) and equation (28) as(

JxK

D

)2

= nc exp(−D/|J |)
[1 − exp(−D/|J |)]2

(31)

EK = −ncD exp(−D/|J |)
1 − exp(−D/|J |) . (32)

3.2. Pure ferromagnetic phase

For the pure ferromagnetic phase withmf = 1 andx = 0, we find that the hybridized f
bands degenerate into f levels with an energy splitting of|J |ms between the spin-up and
spin-down levels, and the f DOS becomes a delta function:

ρf σ = δ(ω − E0 + σ |J |ms/2). (33)

At the same time, there is no hybridization gap in conduction bands, but only a band splitting
of |J | exists between different spin directions. Its conduction electron DOS can be written
as

ρcσ (ω) = (1/2D)θ(ω + D − σ |J |/2)θ(D + σ |J |/2 − ω). (34)

The magnetization of the conduction electrons and the GSE are given by

ms =
{

nc (nc < |J |/2D)

|J |/2D (nc > |J |/2D)
(35)

and

EFM =
{

− 1
2nc(|J |/D − nc)D = ESFS (nc < |J |/2D)

−|J |2/8D = ERFS (nc > |J |/2D).
(36)

We note that, fornc < |J |/2D, only the spin-down band is occupied by the conduction
electrons and the magnetization of conduction electrons approaches the saturation value
ms = nc, which is called the saturated ferromagnetic state (SFS) [10]. Otherwise, in the
case wherenc > |J |/2D, both spin-up and spin-down bands are occupied partially, and we
then have the usual RFS.

3.3. Coexistent phase

We now discuss in detail the ferromagnetic–Kondo coexistent solutions withx 6= 0, ms 6= 0
andmf 6= 0. Generally speaking, for 0< nc < 1 there are three cases corresponding to the
different positions of Fermi level in hybridization bands.
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(1) The Fermi level lies in lower hybridization bands for both spin projections.
(2) The Fermi level moves into the gap of spin-up bands but still lies in the lower

spin-down band with increasing|J |/D for fixed nc.
(3) The Fermi level may enter the upper hybridization band for spin up and the lower

band for spin down in the same region of|J |/D as for case (2).

However, as shown in [11, 12], case (3) is believed to be energetically unfavourable for
0 < nc < 1. This has also been confirmed numerically by comparing its GSE with that of
case (2). Therefore, we shall abandon case (3) and deal only with the coexistent solutions
of the first two cases in the following discussion.

3.3.1. Case (1):εaσ < µ < εbσ . Here,εaσ and εbσ are the edges of lower hybridization
bands for spinσ given by equations (21a) and (21b). In this case the following exact
formulae for the order parameters are derived:

m2
f = J1 − n2

cJ2

J1 − γ 2J1
(37a)

m2
s = J1 − n2

cJ2

1 − J1J2
(37b)(

Jxc

D

)2

= J1
(1 + ncJ2)

2 − (mf + msJ2)
2

(1 − J1J2)2
(37c)

by solving T = 0 mean-field equations (23)–(27) self-consistently. The dimensionless
parametersγ , J1 andJ2 introduced in equation (37) are found to be

γ 2 = J1

1 − J1J2 + J2
= γ 2

MRS (38a)

J1 =
( |J |

2D

)2

− J1J2

(
1 + |J |

2D

)2

(38b)

J1J2 = exp

(
−2D

|J |
)

(38c)

which are independent of the concentrationnc in accordance with [10]. As a result, we
find that with increase in|J |/D the magnetizationmf for a fixed nc is reduced by the
enhancement of the Kondo effect, and the system enters into the pure Kondo state as shown
in curve (1) of figure 1(a). So, we call it the moment-reduced state (MRS). The phase
boundary between the MRS and the pure Kondo state can easily be obtained as

nc =
√

J1/J2 (39)

by settingms = mf = 0 in equation (37).

3.3.2. Case (2):εa↓ < µ < εb↓ andεb↑ < µ < εc↓. Since the Fermi level in this case lies
in the gap region of spin-up electrons, i.e. the lower spin-up bands for both conduction and
f electrons are fully occupied, the following relation can be established:

nc↑ + nf ↑ = 1. (40)

From the mean-field equations (23), (24) and (27), we also have the relationmf =
nf ↑ − nf ↓, ms = nc↓ − nc↑ and nf ↑ + nf ↓ = 1. With these relations, we find that the
total magnetization

mt = mf − ms = 1 − nc (41)
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Figure 1. (a) The f-electron magnetizationsmf versus|J |/D at nc = 0.5, where curves 1 and
2 denote the two cases of ferromagnetic–Kondo coexistent states. (b) The absolute values of the
GSEs|Eg | for the pure Kondo state (curve K), the RFS (curve RFS) and the coexistent states
of case 1 and 2 (curves C(1) and C(2)) vary with|J |/D at nc = 0.5. Here, the solid curves are
the stable ground states, and the broken curves represent the energetically unfavourable states.

is independent of|J |/D and takes the saturation value 1− nc. On the other hand, if we set
mf = γms as in case (1), we can obtain the analytical expressions formf , ms andxc as

mf = (1 − nc)/(1 − γ ) (42a)

ms = γ (1 − nc)/(1 − γ ) (42b)(
Jxc

D

)2

= J1
(1 + ncJ2)

2 − (mf + msJ2)
2

(1 − J1J2)2
(42c)

wherexc satisfies the same form of expression as equation (37c), but the parametersγ , J1

andJ2 must be determined by the following new relations:

γ = (|J |/2D)(1 − J1J2) − J1(1 + J2)

1 + J2 − (|J |/2D)(1 − J1J2)
= γQSS (43a)
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Figure 2. (a) The dependence ofmf on |J |/D for variousnc. (b) The dependence ofmt on
|J |/D for variousnc.

J1

J2
= 2

ncγ − 1

nc + γ − 2
− 1 (43b)

J1J2 = exp

(
−2D

|J |
)

. (43c)

Obviously, the dimensionless parametersγ , J1 and J2 now become functions of bothnc

and |J |/D, distinguishing themselves from case (1). The magnetization of f electrons as
a function of|J |/D for a fixednc has also been plotted in curve (2) of figure 1(a), where
mf is determined by equation (42a) and found to be approximately a linear function of
|J |/D which is different from the SFS withmf = 1 andms = nc. Meanwhile, the total
magnetizationmt for a fixed nc shows a plateau (see figure 2(b) below) and takes the
saturation valuemt = 1 − nc similar to the SFS. Therefore, the coexistent solution shown
in equation (42) behaves like quasi-saturation, and we can name it the quasi-saturated state
(QSS).
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The analytical expression of the GSE for the above two cases is obtained from
equation (28) as

Ec = −
[
nc

(
1 + ncJ2

1 − J1J2
− 1

)
+ m2

s

2

]
D + 1

2
ms(EF↓ − EF↑) (44)

whereEF↑ and EF↓ denote the energy levels which correspond to the upper occupation
limits of spin-up and spin-down electrons, respectively. Here, we haveEF↑ = EF↓ = µ

for case (1) (MRS), but takeEF↑ = εb↑ andEF↓ = µ in case (2) (QSS).

3.4. Ground-state phase diagram

So far, we have obtained the possible solutions of all cases for a FMKL. In order to get
the stable GSPD, we should further compare their GSEs by using equations (32), (36) and
(44). The GSEs of the pure Kondo state, the RFS and the ferromagnetic–Kondo coexistent
state of cases (1) and (2) fornc = 0.5 are sketched in figure 1(b), where the solid curves
represent the stable ground states after comparing their energies. We find that on decrease
in |J |/D the system changes gradually from the Kondo state withmf = 0 to the coexistent
states (MRS and QSS) withmf < 1, and finally it jumps to the RFS withmf = 1 (see
figure 1(a)), which means that there exists a first-order transition between the QSS and RFS.

The f-electron magnetizationmf and the total magnetizationmt versus |J |/D for
different values of the concentrationnc are given in figures 2(a) and 2(b), respectively.
With these results and after comparing their GSEs, we obtain the|J |/D–nc phase diagram
at T = 0 K as figure 3, that is the GSPD. The GSPD contains five states, i.e. the pure
Kondo state, the MRS, the QSS, the SFS, and the usual RFS. The phase boundary between
the Kondo and the MRS state is determined by equation (39), the boundary between the
MRS and the QSS byγMRS = γQSS , the boundary between the QSS and the RFS by
Ec(QSS) = ERFS and the boundaries between the SFS and the RFS, QSS and MRS are given
by nc = |J |/2D, nc = γQSS andnc = γMRS , respectively. Furthermore, one can easily find
from figure 3 that the changes in the ground state on increase in|J |/D at a fixednc are
as follows. For high concentrations(nc > 0.15), the ground state goes consecutively from
RFS→ QSS→ MRS → Kondo state as mentioned above, while for the low concentrations
(nc < 0.15), the SFS occurs instead of the QSS, and the ground state of the system then
changes according to the following way: RFS→ SFS→ MRS → Kondo state. These
indicate that the system evolves gradually into the Kondo phase with increasing|J |/D,
which is one aspect of the competition between the Kondo and ferromagnetic phases. On
the other hand, the results that themf –|J |/D andmt–|J |/D curves move down with increase
in nc, as in figures 2(a) and 2(b), show us another aspect of the competitions due to the
enhancement of Kondo screening as the concentrationnc of conduction electrons increases.

4. TC–|J |/D phase diagram

For a comprehensive understanding of the competition effects, in this section we shall extend
our discussion on the phase diagram of a FMKL to finite temperatures. We shall first derive a
formula which determines the Curie temperatureTC of the ferromagnetic–Kondo coexistent
phase, and then the dependence ofTC on |J |/D for different nc is calculated by solving
the T > 0 mean-field equations (23)–(27) self-consistently.
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Figure 3. Zero-temperature phase diagram of the FMKL model: curve 1, Kondo phase; curve 2,
coexistent ferromagnetic phase; curve 3, pure ferromagnetic phase.

4.1. TC equation of the coexistent phase

The Curie temperatureTC here represents the transition temperature between the
ferromagnetic–Kondo coexistent phase and the pure Kondo phase. It is determined by
the conditionsmf = ms = 0 andx 6= 0. In the region nearTC wheremf andms approach
zero, one can expand the band edges shown in equation (21) only to first order inmf and
ms . To this order of accuracy,

εaσ = εa + σ(|J |u+/4)mf + σ(|J |u−/4)ms (45a)

εbσ = εb − σ(|J |v−/4)mf − σ(|J |v+/4)ms (45b)

εcσ = εc − σ(|J |u−/4)mf − σ(|J |u+/4)ms (45c)

εdσ = εd + σ(|J |v+/4)mf + σ(|J |v−/4)ms (45d)

where

u± = D + E0√
(D + E0)2 + 4(Jx)2

± 1 (46a)

v± = D − E0√
(D − E0)2 + 4(Jx)2

± 1. (46b)

Here εa, εb, εc and εd are the band edges of the Kondo phase which have been given in
equation (30). Substituting equations (45) and (46) into the mean-field equations (23) and
(24), we obtain the following linear equations ofmf and ms for temperatures just below
TC :

mf = αmf + βms (47a)

ms = ξmf + ηms. (47b)

The TC equation of the ferromagnetic–Kondo coexistent phase is then found to be

(1 − α)(1 − η) = βξ (48)
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with

α = J 2x2

2D

(
f (εd)

(εd − E0)2
v+ + f (εc)

(εc − E0)2
u− − f (εb)

(εb − E0)2
v− − f (εa)

(εa − E0)2
u+

)
(49a)

β = J 2x2

2D

(
f (εd)

(εd − E0)2
v− + f (εc)

(εc − E0)2
u+ − f (εb)

(εb − E0)2
v+ − f (εa)

(εa − E0)2
u−

)
−2|J |

( ∫ εb

εa

+
∫ εd

εc

)
f (ω)

(ω − E0)3
dω (49b)

ξ = 1

2D
[f (εa)u+ + f (εb)v− − f (εc)u− − f (εd)v+] (49c)

η = 1

2D
[f (εa)u− + f (εb)v+ − f (εc)u+ − f (εd)v−] (49d)

wheref (ω), f (εa), . . . andf (εd) are the Fermi distributions atT = TC .
To find the dependence ofTC on |J |/D at a fixednc, we have to perform numerical

calculations of equations (48) and (49), in which the quantitiesx, E0 andµ must be obtained
self-consistently from the following mean-field equations atT = TC :

nf = J 2x2

D

( ∫ εb

εa

+
∫ εd

εc

)
f (ω)

(ω − E0)2
dω = 1 (50a)

nc = 1

D

( ∫ εb

εa

+
∫ εd

εc

)
f (ω) dω (50b)

x = −|J |x
D

( ∫ εb

εa

+
∫ εd

εc

)
f (ω)

ω − E0
dω. (50c)

In a similar way, the transition temperatureTRKKY of the pure ferromagnetic phase can
also be derived from the mean-field equations with the use of equations (33) and (34) as
the f DOS and conduction electron DOS, respectively. The result takes the usual form

kBTRKKY = |J |2/8D = |ERFS | (51)

which is equal to the absolute value of GSE in the RFS. In order to clarify the competition
between ferromagnetic order and the Kondo effect in the coexistent phase, we still have to
introduce the Kondo temperatureTK . As an energy scale,kBTK is usually defined by the
difference between the GSEs of the pure Kondo phase and the paramagnetic phase with
x = 0 [15]. Thus we have

kBTK = ncD exp(−D/|J |)/[1 − exp(−D/|J |)] = |EK | (52)

which is just the absolute value ofEK in equation (32).

4.2. TC–|J |/D phase diagram for differentnc

Our theoreticalTC–|J |/D curve for a fixed concentrationnc = 0.2 is shown in figure 4(a),
whereTRKKY andTK are also sketched. It is clear that figure 4(a) contains the basic informa-
tion of Doniach’s bell-shaped phase diagram. In the weak-coupling region whereTRKKY �
TK , the variation inTC with |J |/D coincides with that ofTRKKY which is proportional toJ 2,
and the system stays in the RKKY ferromagnetic phase. In the intermediate-coupling region
whereTK increases rapidly with increasing|J |/D, it approaches and even goes beyond the
value ofTRKKY . In this case the competition between the Kondo effect and ferromagnetic
order comes into force, which makes the system change from the RKKY ferromagnetic
phase to the coexistent phase. As a result, the increment ofTC with increasing|J |/D is
lowered andTC arrives at a maximum whenTK ' TRKKY , which reflects the behaviour of
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Figure 4. (a) The Curie temperatureTC of the ferromagnetic–Kondo coexistent phase versus
|J |/D at nc = 0.2, whereTRKKY is the Curie temperature of the RKKY ferromagnetic phase
andTK is the Kondo temperature. (b) TheTC–|J |/D curves for various values ofnc.

the QSS. With further increasing coupling,TC becomes a decreasing function of|J |/D when
TK > TRKKY , where the coexistent MRS comes into being because of suppression of ferro-
magnetic order by the Kondo effect as mentioned above in section 3. In the strong-coupling
region whereTK � TRKKY , TC drops rapidly, and finally the system moves into the non-
magnetic Kondo phase. Therefore, the schematically bell-shaped phase diagram proposed
by Doniach [7] is reproduced from a 3D FMKL model using the functional integral method.

The numerical results of theTC–|J |/D curves for different concentrationsnc have also
been obtained and are shown in figure 4(b), which can give us further information about the
phase diagram in theTC–|J | plane. Note that theTC–|J |/D curve in the intermediate-
coupling region moves downwards increasingly with increasingnc. Physically, the
enhancement of the Kondo screening with increase in the conduction electron concentrations
is responsible for this interesting result. The corresponding result atT = 0 has already been
obtained in figure 2(b), where themt–|J |/D curve also shown a downturn behaviour asnc

increases, for the same reason. Both the results are of use for the HF ferromagnets.
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5. Conclusions and discussion

Now we conclude this paper with some discussion, attempting to compare our theoretical
results with the experiments on HF ferromagnets. We have presented a SCMF theory
to investigate the phase diagram of a FMKL model by adopting the functional integral
formalism with four auxiliary Bose fields. In this formalism both the Kondo effect and
ferromagnetic order can be studied on the same footing. The ferromagnetic–paramagnetic
(Kondo) phase diagrams including the ferromagnetic–Kondo coexistent phase atT = 0 and
T > 0 have been obtained. The main results which are useful for qualitatively explaining
the experiments are as follows.

(1) For a fixed concentrationnc, the dependence of the Curie temperatureTC on the
exchange-coupling strength|J |/D given in figure 4(a) behaves according to the bell-shaped
phase diagram proposed by Doniach [7], which is thought to be a universal phase diagram
of the HF magnets [5].

(2) As shown in figure 4(b), the bell-shapedTC–|J |/D curve shifts downwards with
increasing conduction electron concentrationnc.

(3) The total magnetizationmt versus|J |/D also shows a consecutive downturn with
increase innc, as sketched in figure 2(b).

All in all, the magnetic properties of a FMKL system are determined by both|J |/D
and nc, which are controlled experimentally by chemical substitution and the application
of pressure. The application of pressure is known to increase the value of|J |/D in Ce
compounds [16]. However, there are at least two cases for chemical substitution in HF
ferromagnets, e.g. in the ternary Ce compound CeRh3B2. The first case is the change in
|J |/D at a fixed value ofnc in the CeRh3(B1−ySiy)2 series by substituting Si for B to expand
the lattice, and the expansion of the lattice would be expected to decrease the magnitude of
|J |/D [5, 17]. Note that the coupling|J | in CeRh3B2 is proportional to|V |2df , whereVdf is
the strength of f–d hybridization between the f electrons of Ce and the conduction electrons
from the 4d band of Rh [17]. Obviously, Si substitution does not change the conduction
electron concentrationnc of the 4d electrons in Rh, and the only change is the suppression of
|J |/D due to the cell-volume expansion by doping with Si in CeRh3B2 [5]. The second case
is concerned with the substitution of Ru for Rh in the Ce(Rh1−yRuy)3B2 series, where the
increase in the concentrationnc of the 4d conduction electrons has been observed directly
by XPS measurements, but the cell volume remains unchanged upon doping of Ru [5, 18].
Thus we have the case of increasingnc with a fixed value of|J |/D in the Ru substitution
system.

We now compare our theoretical results with the experiments on CeRh3B2 as follows.

(1) As pointed out by Cornelius and Schilling [5], the results for both pressure
measurements on CeRh3B2 and Si substitution experiments are in good agreement with
each other. Both data roughly follow a bell-shapedTC–|J |/D curve which resembles
the schematic phase diagram presented by Doniach. It is seen to be in reasonably good
agreement with our theoretical curve ofTC–|J |/D for a fixed value ofnc.

(2) For Ru substitution in the Ce(Rh1−yRuy)3B2 series, one can find thatTC drops
vertically at a fixed value of|J | with increasing doping concentrationy from the data
collected in [5]. We caution that this can be considered as the second case of chemical
substitution mentioned above. In this case the Curie temperatureTC of the system has to
go downwards along the vertical line with a fixed|J | owing to the enhancement of Kondo
screening asnc increases. Therefore, the results for Ce(Rh1−yRuy)3B2, which had been
considered as an exception to Doniach’s phase diagram in [5], can now be explained by
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the theoretical results given in figure 4(b). In fact, it is an extension of Doniach’s phase
diagram (i.e. theTC–|J |/D curve) to cases with variablenc.

(3) The saturation moment of the Ce(Rh1−yRuy)3B2 system shows a similar downward
behaviour with increasingnc [5], which is also in qualitative agreement with the results
shown in figure 2(b), where themt–|J |/D curve shifts downwards as the concentrationnc

increases. The results of both (2) and (3) can be explained by the competition between the
Kondo effect and ferromagnetic order, which have been given in sections 3.4 and 4.2.

It is perhaps interesting to compare our results with the previous theoretical works [8, 9].
Because of neglect of the competition between the pure Kondo and the pure ferromagnetic
states, it was impossible to obtain the ferromagnetic–Kondo coexistent solutions in [8, 9].
After taking this point into account, we obtained a rather complete phase diagram. Apart
from the pure Kondo state and pure RFS, it also includes the coexistent states, namely the
MRS and the QSS, which play important roles in the finite-temperature properties of the
system.

Finally, we would like to mention that, although the above discussion is valid only in the
framework of the SCMF approximation, we have succeeded in reproducing the schematic
phase diagram proposed by Doniach and also in obtaining its extended version for the cases
with variable nc from a 3D FMKL model. These are of practical use for qualitatively
explaining the experimental observations in HF magnets.
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